

SANT NIRANKARI PUBLIC SCHOOL <u>AVTAR ENCLAVE</u> HOLIDAYS HOMEWORK (2017-18) <u>CLASS – IX</u>

ENGLISH

- 1. Prepare for the Periodic Test- I.
- 2. Read the novel 'Three Men In a Boat' thoroughly and write one important event from each chapter (Chapter 1 to 5) in 100 words each.
- 3. Write stories beginning with the following lines (in120 words each) on A-4 sized sheets:
 - a. It was my birthday and I was very excited as my father promised-----
 - b. It was late night when I woke up suddenly to the noise of a door creaking------
 - c. It was Independence Day. I and my friends were flying kites on my terrace. Just then we saw------
 - d. It was a winter's evening when I was doing my homework. I rubbed my eyes in surprise when I looked out of the window. There was an alien-----
- 4. Try to converse with your family and friends in English.
- 5. Read English newspaper daily (at least two full articles of your choice).
- 6. Watch informative and interesting programmes on Discovery, National Geographic or History Channel (in English).

SOCIAL STUDIES

- 1. Read, learn and revise all the chapters of the syllabus of Periodic -1.
- 2. Do a Project work on 'Disaster Management'. (5 marks)

Projects should be made from eco- friendly products without incurring too much expenditure. It should be handwritten and comprise of not more than 15 fullscape pages.

3. Practice following maps and paste them in your map notebook. (5 marks)

HISTORY

Chapter 1 (labeling/ identification)

- a. Bordeaux
- b. Nantes
- c. Paris
- d. Marseilles

Chapter-2 (Locating/Labelling/Identification)

Major countries of First World War

- a. Central Powers Germany, Austria- Hungry, Turkey
- b. Allied Powers France, England, Russia, America.

GEOGRAPHY

Chapter 1 (location/ labeling)

India – States with capitals, Tropic of Cancer, Standard Meridian, Southern most, Northern most, Eastern most and Western most point of India.

Chapter 2 (Location/ labeling)

- a. Mountain Ranges: The Karakoram, The Zaskar, The Shivalik, The Aravali, The Satpura, Western and Eastern Ghats
- b. Mountain Peaks: K2, Kanchenjunga, AnaiMudi
- c. Plateau: Deccan Plateau, Chota Nagpur, Plateau, Malwa Plateau
- d. Coastal Plains: Konkan, Malabar, Coromandal and Northern Circar

SCIENCE

- 1. Revise the syllabus of Periodic Test- 1.
- 2. Write all the practical's of Term-1 in practical copy.(P&C)

FOUNDATION OF IT

- 1. Surf the internet and find the applications of computer (with the areas where computers are being used with their images) and write in your school notebooks.
- 2. Make a presentation on Input/ Output/ Storage device, stating use of each (soft copy to be submitted in CD/DVD).
- 3. Make a list of abbreviations commonly used from the chapter Computer Fundamentals in school notebook.
- 4. Explain IPO Cycle with a neat diagram.(A4 sheet)
- 5. Make an attractive advertisement of a newly opened coaching center in your area in Ms Word using different shapes, pictures and clipart. (A4 Sheet)

MATHEMATICS

- 1. Do all the assignments in separate Assignment Register.
- 2. Write all the formulas related to Class VIII in a separate thin notebook.
- 3. Do practice of chapters: Number System, Polynomial and Lines and Angles.

Sant Nirankari Rublic School
Avtor Enclave
NUMBER SYSTEM
CLASS-1x
ASSIGNMENT
1. Simplify:
$$\frac{\sqrt{5}-2}{\sqrt{5}+2} = \frac{\sqrt{5}+2}{\sqrt{5}-2}$$

2. Simplify: $\frac{4\sqrt{2}}{\sqrt{15}-3\sqrt{2}} + \frac{3\sqrt{5}}{\sqrt{10}-\sqrt{13}} + \frac{5\sqrt{3}}{\sqrt{6}+\sqrt{5}}$
3. Simplify: $\frac{1}{2-\sqrt{3}} = -\frac{1}{\sqrt{3}+\sqrt{2}} + \frac{5}{3-\sqrt{2}}$
4. Find the value of a and b: $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - b\sqrt{3}$
5. Find the value of a and b: $\frac{\sqrt{2}+\sqrt{3}}{3\sqrt{2}-2\sqrt{3}} = a + b\sqrt{6}$
6. Rationalize the denominator: $4\sqrt{3} + 5\sqrt{2}$
7. Find the value of a and b if: $\frac{\sqrt{7}-1}{\sqrt{7}+1} = a + b\sqrt{7}$
8. If $\sqrt{2} = 1.414$ and $\sqrt{3} = 1.732$ then find the value of $\frac{\sqrt{5}-1}{\sqrt{3}}$
upto three places of decimal.
9. If $a = 8+3\sqrt{7}$ and $b = \frac{1}{2}$, find the value of $a^2 - b^2 + ab$.

Sant Nirankari Rublic School
Avlar Enclave
NUMBER SYSTEM
CLASS-1X
ASSIGNMENT
1. Insurt a rational number b/w the following:
(1) 6 and 7 (ii)
$$\frac{1}{7}$$
 and $\frac{1}{8}$ (iii) $\frac{2}{3}$ and $\frac{2}{3}$ (iv) 1 and 1.1
2. Find five rational numbers b/w;
(i) $\frac{3}{8}$ and $\frac{5}{8}$ (ii) -3 and 2 (iii) $\frac{4}{7}$ and $\frac{4}{11}$
3. Write the following in decimal form and find what kind of
decimal expansion they have.
(i) $\frac{10}{1006}$ (ii) $\frac{2}{11}$ (iii) $\frac{6}{8}$
4. Express the following in the form $\frac{1}{7}$, where β and q are integers
and $q \neq 0$.
(i) 8.325 (iii) 3.8 (iii) 1.0049
5. What do you mean by irrational number.
6. locate the following numbers on the number line $\frac{1}{\sqrt{5}}$.
7. Represent geometrically the following numbers on the number line:
(i) $\sqrt{5.6}$ (ii) $\sqrt{8.1}$
8. Rationalize the denominator: $\frac{1}{\sqrt{5}+\sqrt{2}-\sqrt{5}}$
9. If $a = 5-2\sqrt{6}$, then find the value of:
(a) $\sqrt{a} - \frac{1}{\sqrt{a}}$ (b) $a^2 + \frac{1}{a^2}$
10. If $a = 9 + 4\sqrt{5}$ and $b = \frac{1}{a}$, then find the value of:
(a) $a^2 + b^2$ (b) $a^3 + b^3$

Sant Nirankarii Rublic School
Mar Erclare
POLYNO MIALS
CLASS-IX
ASSIGNMENT
1. When an algebriaic expression is known as polynomial in
one variable?
2. Which of the following expressions are polynomials and which are
not. State reasons for your answer:
Wilk of the following expressions are polynomials and which are
not. State reasons for your answer:
Wilk of the following expressions are polynomials and which are
not. State reasons for your answer:
Wilk 1: (W)
$$7x^2 - 5x + \sqrt{5}$$
 (W) $t^3 - 2t + 1$
W) $x^2 - \frac{1}{x^2}$ (V) $\sqrt{y} + 5y - 1$ (R) $z^{11} - 5z^7 + \frac{1}{4}$
3. Write a monomial of degree 40, a binomial of degree 50 and
a trinomial of degree 60.
4. Write the coefficient of x^3 in each of the following:
(D) $x^3 - 3x + 2$ (W) $14 - 2x^3 + 5x - 7x^2$ (W) $\sqrt{2x^2} + 1$ (W) $\frac{2}{3}x^3 + 2x - 3$
6. Write the degree of each of the following polynomials:
(D) $3x^2 - 4x + 2$ (W) $7x^2 + 1$ (W) $5x^2 - 3x + \sqrt{7}$
(W) $1 + 5x$ (V) $4x^3$ (W) $10x$
7. Find the value of $p(x) = x^3 - 3x^2 + 5x + 7$ at
(D) $x = 0$ (W) $x = 1$ (W) $x = 2$
8. Find $p(0)$, $p(-1)$ and $p(3)$ for each of the following:
(D) $p(x) = x^2 - 5x$ (W) $p(x) = x^2 + 1$ (W) $p(x) = x^2 + 1 + 1$
9. Verify whether the indicated number(d) given against each are
zeroes of the corresponding polynomial:
(D) $p(x) = 5x - 1, x = \frac{1}{\sqrt{3}}$ (W) $4(x) = 7x + 1, x = \frac{1}{\sqrt{3}}$ (W) $p(x) = (x - 2)(x - 5), x = 2, 5$ (W) $4(x) = x^2, x = 0, 1$ (W) $p(x) = (x - 2)(x - 5), x = 2, 5$ (W) $4(x) = x^2, x = 0, 1$ (W) $p(x) = (x - 2)(x - 5), x = 2, 5$ (W) $4(x) = x^2, x = 0, 1$ (W) $p(x) = (x - 2)(x - 5), x = 2, 5$ (W) $4(x) = x^2, x = 0, 1$ (W) $p(x) = (x - 2)(x - 5), x = 2, 5$ (W) $4(x) = x^2, x = 0, 1$ (W) $p(x) = (x - 4), x = \frac{1}{\sqrt{3}}, \sqrt{3}$ (W) $g(x) = 5x^2 + 7x, x = 0, -\frac{1}{5}$

10. Find the zeroles) of each of the following polynomial:
(i)
$$p(x) = x - 4$$
 (ii) $g(x) = 2x + 1$ (iii) $p(x) = (x + 2)(x - 2)$
(iv) $p(x) = 4x + 4$, $r \neq 0$ (viii) $p(x) = 7x$ (vi) $p(x) = 4x$, $a \neq 0$
(vii) $p(x) = 4x + 4$, $r \neq 0$ (viii) $p(x) = (-1)(x - 2)(x - 3)$
11. Show that 5 is a zero of the polynomial $2x^3 - 7x^2 - 16x + 5$.
12. Show that 1, -1 and 3 are all zeroes of the polynomial $x^2 + 2x - 4$.
13. Show that 1, -1 and 3 are all zeroes of the polynomial $x^2 + 2x - 4$.
14. By actually dividing and by using the remainder theorem, find
the remainder when $f(x)$ is divided by $g(x)$ and verify that the
sumainders in both cases are same.
(i) $f(x) = x^3 + 4x^2 - 3x - 10$, $g(x) = x + 4$
(ii) $f(x) = 2x^4 - 6x^3 + x^2 - x + 2$, $g(x) = x - 2$
(iii) $f(x) = 2x^4 - 6x^3 + x^2 - x + 2$, $g(x) = x + 2$
(iv) $f(x) = x^3 - 5x^2 + x - 5$, $g(x) = 1 - 3x$
15. Using Remainder Theorem find the remainder when $f(x)$
is divided by $g(x)$:
(i) $f(x) = x^{3-} - 4x^2 + 2x + 7$, $g(x) = x + \frac{1}{2}$
(iii) $f(x) = 9x^3 - 3x^2 + x - 5$, $g(x) = x - \frac{2}{3}$
(iv) $f(x) = 3x^4 + 2x^3 - \frac{1}{3}x^2 - \frac{1}{4}x + \frac{2}{21}$, $g(x) = x + \frac{2}{3}$
16. By Remainder Theorem Show that $3x^3 + 11x^2 + x - 15$ is
a multiple of $x - 1$.
17. Check whether the polynomial $g(f) = 4t^3 + 4t^2 - t - 1$
18. Determine which of the following polynomial $x - 1$ is a factors
(i) $x^3 - x^2 - x + 1K$ (ii) $x^4 - 2x^3 + 3x^2 + x - 2$

19. Show that x+2 is a factor of the polynomial x3+ 3x2+3x+2

20. Use factor theorem to determine whether g(x) is a factor of p(x) in each of the following cases. (i) p(x) = 3x2 - 5x + 2, g(x) = 3x - 2(ii) p(x) = x4 - x3 + x - 1, g(x) = x - 2(iii) p(x) = x5 - x4 + 3x2 - 2x + 4.g(x) = 2c - 2

Sant Nirankari Public School
Avan Enclave
POLYNOMIALS
CLASS-1X
ASSIGNMENT
1. Using Remainder Theorem find the remainder when
$$f(x)$$
 is
divided by $g(x)$:
 $f(x) = x^{2^2} = x^{1^2} - 1$, $g(x) = x + 1$
2. Using Remainder Theorem find the sumarider when $f(x)$ is
divided by $g(x)$:
 $f(x) = x^3 - 4x^2 + 2x + 7$, $g(x) = x + \frac{1}{2}$
3. Using Remainder Theorem find the sumarider when $f(x)$ is
divided by $g(x)$:
 $f(x) = 9x^3 - 3x^2 + x - 5$, $g(x) = x - \frac{2}{3}$
4. Using Remainder Theorem find the sumarider when $f(x)$ is
divided by $g(x)$:
 $f(x) = 9x^3 - 3x^2 + x - 5$, $g(x) = x - \frac{2}{3}$
4. Using Remainder Theorem find the sumarider when $f(x)$ is
divided by $g(x)$:
 $f(x) = 3x^4 + 2x^3 - \frac{1}{3}x^2 - \frac{1}{4}x + \frac{2}{27}g(x) = x + \frac{2}{3}$
5. Find the value of X if $x - 1$ is a factor of $2x^2 + kx + \sqrt{2}$
6. For what value of X is the polynomial $x^3 + 2x^2 - 3ax - 8$ is a
multiple of $x - 4$?
7. Find the value of p' for which the polynomial $2x^4 + 3x^3 + 2px^2 + 3xx6$
is divisible by $x + 2$.
8. Determine the value of b' for which the polynomial $5x^3 - x^2 + 4x + b$
is divisible by $1 - 5x$?
9. For what value of m' is the polynomial $2x^4 - mx^3 + 4x^2 + 2x + 1$
divisible by $1 - 2x$.
10. Find the values of m' and b' do that the polynomial $x^3 + 16x^2 + 6x + 4x^2$

- 11. If $x^3 + px^2 + qx + 6$ has x 2 as a factor and leaves remainder 3 when divided by x - 3, find the values of p and q.
- 12. The polynomials $ax^3 + 3x^2 13$ and $2x^3 5x + a$ are divided by x-2. The remainder in each case is the same, Find the value of a and b.
- 13. Find the value(s) of b if $b^2 x^3 bx^2 + 3bx b$ is exactly divisible. by x - 3.
- 14. Find 'a and b' if x-1 and x-2 exactly divide the polynomial x³+ax²-bx+10.
- 15. Find the values of 'h' and 'k' if x+1 and x-2 are factors of the polynomial x³+kx²+hx+6.
- 16. If 2c-3 and $2c-\frac{1}{3}$ are both factors of $p2c^2+5x+r$, then show that b=r.
- 17. Show that (x-2)(x+3) and (x-4) are factors of $x^3 3x^2 10x + 24$.
- 18. Show that (x+4)(-3) and (x-7) are factors of $x^3 6x^2 19x + 84$.
- 19. Find the value of a, if x+2 is a factor of $4x^{4}+2x^{3}-3x^{2}+8x+5a$.
- 20. Find the value of k if x-3 is a factor of $k^3x^3 kx^2 + 3kx k$.
- 21. Find the value of a and b, if 22-4 is a factor of axi+2x3-3x2+bx-4.
- 22. Find the values of pand q so that x4+px3+2x2-3x+q is divisible by (x2-1).

23. Find the values of a and b' so that (2c+1) and (2c-1) are factors of x4+ax3-3x2+2x+b.

24. If 2c3+ac2-bx+10 is divisible by 22-3x+2. Find the values of 'a and b'.

25. If both x+1 and x-1 are factors of ax³+x²-2x+b, find the values of a and b'.

26. Factorize:
$$x^2 + 7x + 12$$
.
27. Factorize: $6x^2 - 5x - 6$
28. Factorize: $x^3(s-t)^3 + s^3(t-x)^3 + t^3(x-s)^3$
29. Factorize: $6x^2 + 17x + 12$
30. Factorize: $5x^2 - 10x$
31. Factorize: $5x^2 - 10x$
31. Factorize: $7(x-2y)^2 - 25(x-2y) + 12$
33. Factorize: $7(x-2y)^2 - 25(x-2y) + 12$
33. Factorize: $a^2 + 3a - 88$
34. Factorize: $a^2 - 14a - 51$
35. Factorize: $x^2 - 22x + 120$
37. Factorize: $x^2 - 22x + 120$
37. Factorize: $x^2 - 22x + 120$
37. Factorize: $x^2 - 32x + 12$
38. Factorize: $a^2 + 14x + 48$
39. Factorize: $x^2 - 4x - 21$
40. Factorize: $40 + 3x - x^2$
41. Factorize: $y^3 - 23y^2 + 112y^2 - 120$
43. Factorize: $y^3 - 23y^2 - 19y + 42$
44. Factorize: $x^3 + 5x^2 - 4x - 20$
45. Factorize: $x^3 + 13x^2 + 32x + 20$.

6. If a transversal intersect two perallel lines, prove that the bisector of any poin of woresponding angles so formed are parallel. 7. hove that the sum of the angles of a triangle is 180°. 8. If the bisector of angles LB and LC of a triangle ABC meet at a point 0, then prove that ZBOC = 90°+1/LA. 9. In fig, 80 and CO are the bisectors of exterior angles 2B and LC of DABC. Find LBOC. A C 10. In fig, find the value of n 45° 20 11. In Si, AB ICD. Rud LAEC 1100 40° 12. hove that if arms of an angle are respectively parallel to the couns of another angle, then the angles, are cither equal or supplementary,

13. Infig, PTLOR and PS is the bisector of LP. If LO-60° und ZR= 30°, find ZTPS. 30 14. hove that if a side of a triangle is produced then the exterior angle so formed is equal to the sum of the two interior opposite angles. 15. In fig, LDFP, LEDQ and LFER are enterior angles of ADEF prove that LDFP + LEDQ + LFER = 360° 780 16. Infeg, BD and CD are angle bisector of LABC and LACE despectively. Prove that LBDC = 12BAC C E

Sant Nörankari Vublic School. Avtar Enclore. <u>COORDINATE GEOMETRY</u> Class-IX

ssignment-

1. Write the answer of each of the following questions:

- (i) What is the name of horizontal and the vertical lines drawn to determine the position of any point in the Cartesian plan?
- (ii) What is the name of each part of the plane formed by these two lines?
- (iii) Write the name of the point where these two lines intersect.
- (iv) Write the abscissa and ordinate of the point with coordinates (8, 10).
- (v) Do the ordered pairs (4, -2) and (-2, 4) represent the same point in the coordinate plane?
- (vi) What are the abscissa and ordinate of the origin?
- 2. Fill in the blank spaces in each of the following statements (Fig. 1);
 - (i) The abscissa and ordinate of the point P are ------ and ------ respectively.
 - (ii) The x-coordinate and y-coordinate of the point Q are ----- and ------ respectively.
 - (iii) The x-coordinate and y-coordinate of the point R are ----- and ------ respectively

- (iv) The abscissa and ordinate of the point S are ---- and ----- respectively.
- (v) The coordinates of the points P, Q, R and S are ------, -----, and ------
- 3. Write the coordinates of a point which
- (i) lies on the x-axis and is at a distance of 4 units to the right of the origin.
- (ii) lies on the x-axis and at a distance of 7 units to the left of the origin.
- (iii) lies on the y-axis and at a distance of 3 units above x-axis.
- (iv) lies on the y-axis and is at distance of 5 units below x-axis.

4 4	Stata tha' qua	drant in whit	ch each of t	he fo lowi	ng point	lie:		
t. (i)	(0 1)	(ii) (5 2)	(iii) (-7, 1	1)	(iv) (2,	2)	(V) (-6, -4)
(1)	(2, 1)	(1) $(0, 2)(vii)$ $(6, -6)$	(viii) (-5, -	5)	(ix) (-7	7)	(x) (-4, -6)
5	Which of the	following po	ints belong	to the x-a	ixis?			
	A (2 0)	B (3, 3) C	(4, -1)	D (0, 1)	E	(0, -5)
	F (0 -8)	G	-2, 0) H	(0, 8)	I (-a, 0)	10500	J	(0, b)
ô.	The following	g table gives	the relation	between	natural r	numbers	and o	dd natural
	numbers	* - 2900 TAVI 9						
	Х	1	2	3	4		5	
	Y	3	5	7	9		11	
7.	Plot each of (i) (3, 4) Use the scal	the following (ii) -3, e 1 cm = 1 u ordered pairs	g points in a -4 (iii init on the a of the linea	i Cartesia i) 0,5 ixes ar equatio	n 2x + y :	(iv) 2, – = 4 and	5 plot the	(vi) 2, 0 em. How many
7. 8. 9.	Plot each of (i) (3, 4) Use the scal Find some of such ordere The followin triangle	the following (ii) -3, e 1 cm = 1 u ordered pairs d pairs can b ng table gives	points in a -4 (iii init on the a of the linea be found an s measures	i) 0,5 xes ar equatio d plotted' (in degre	n 2x + y = ? ees) of two	(iv) 2, – = 4 and o acute	5 plot the angles	(vi) 2, 0 em. How many of a right
7. 8. 9.	Plot each of (i) (3, 4) Use the scal Find some of such ordere The followin triangle	the following (ii) -3, e 1 cm = 1 u ordered pairs d pairs can b ng table gives	points in a -4 (iii on the a of the linea be found an s measures	i) 0,5 xes ar equatio d plotted' (in degre	2x + y = 2	(iv) 2, – = 4 and o acute	5 plot the angles	(vi) 2, 0 em. How many of a right
7. 8. 9.	Plot each of (i) (3, 4) Use the scal Find some of such ordere The followin triangle	the following (ii) -3, $e \ 1 \ cm = 1 \ u$ ordered pairs d pairs can b ag table gives $10 \ 20$ 80 70	g points in a -4 (iii init on the a of the linea be found an is measures 	i) 0,5 xes ar equatio d plotted' (in degre	1000000000000000000000000000000000000	(iv) 2, – = 4 and o acute 60 30	5 plot the angles 70 20	(vi) 2, 0 em. How many of a right 80 10
7. 8. 9.	Plot each of (i) (3, 4) Use the scal Find some of such ordere The followin triangle X Y	the following (ii) -3 , e 1 cm = 1 u ordered pairs d pairs can b ing table gives 10 20 80 70	g points in a -4 (iii init on the a of the linea be found an s measures 30 60	i) 0,5 xes ar equatio d plotted' (in degre	1000000000000000000000000000000000000	(iv) 2, – = 4 and o acute 60 30	5 plot the angles 70 20	(vi) 2, 0 em. How many of a right 80 10
7. 8. 9.	Plot each of (i) (3, 4) Use the scal Find some c such ordere The followin triangle X Y	the following (ii) -3 , e 1 cm = 1 u ordered pairs d pairs can b ing table gives 10 20 80 70 points of the pairs	y points in a -4 (iii init on the a of the linea be found an s measures 30 60 plane which	i) 0,5 xes ar equatio d plotted' (in degree 40 50	1000000000000000000000000000000000000	(iv) 2, – = 4 and o acute 60 30	5 plot the angles 70 20	(vi) 2, 0 em. How many of a right 80 10 Irant.
7. 8. 9. 10	Plot each of (i) (3, 4) Use the scal Find some of such ordere The following triangle X Y Name the p Which of th	the following (ii) -3 , e 1 cm = 1 u ordered pairs d pairs can b ing table gives 10 20 80 70 boints of the p e following p	points in a -4 (iii init on the a of the linea be found an s measures 30 60 plane which points belone	i) 0,5 xes ar equatio d plotted' (in degre 40 50 i do riot bing to the y	1000000000000000000000000000000000000	(iv) 2, – = 4 and o acute 60 30	5 plot the angles 70 20	(vi) 2, 0 em. How many of a right 80 10 Irant.
7. 8. 9. 10	Plot each of (i) (3, 4) Use the scal Find some of such ordere The following triangle X Y Name the p Which of th L (5, 5)	the following (ii) -3 , e 1 cm = 1 u ordered pairs d pairs can b ing table gives 10 20 80 70 boints of the p e following p M (0, 5)	a points in a -4 (iii init on the a of the linea be found an is measures 30 60 plane which points below N (ar equation d plotted' (in degreent of the second d plotted' (in degreent of the second d plotted) (in degreent of the second d plotted) d d o riot bound of the second d plotted bound d plotted (second d plotted) d d o riot bound d plotted (second d plotted) d d o riot bound d plotted (second d plotted) d d o riot bound d plotted (second d plotted) d d o riot bound d plotted (second d plotted) d d plotted (second d plotted) d d plotted (second d plotted) d plotted) d plotted (second d plotted) d plotted	1000000000000000000000000000000000000	(iv) 2, – = 4 and o acute 60 30 any of tr 0)	5 plot the angles 70 20	(vi) 2, 0 em. How many of a right 80 10 Irant. P (-6, 0)
7. 8. 9. 10	Plot each of (i) $(3, 4)$ Use the scal Find some of such ordere The followin triangle X Y Name the p Which of th L $(5, 5)$ Q $(0, -8)$	the following (ii) -3 , e 1 cm = 1 u ordered pairs d pairs can b ing table gives 10 20 80 70 boints of the p e following p M (0, 5) R (-2, 0)	a points in a -4 (iii init on the a of the linea be found an s measures 30 60 blane which boints belon N (S (ar equation d plotted' (in degree 40 50 and o riot bing to the y (3, 0) (0, -4)	replane. $2x + y = 2x^2$ $2x + y = 2x^2$ $2x + y = 2x^2$ 50 40 40 40 40 40 7 40 7 7 7 7 7 7 7 7	(iv) 2, – = 4 and o acute 60 30 any of tr 0) 0)	5 plot the angles 70 20	(vi) 2, 0 em. How many of a right 80 10 Irant. P (-6, 0) Z (0, b)
7. 8. 9. 10 11	Plot each of (i) $(3, 4)$ Use the scal Find some c such ordere The followin triangle X Y Name the p Which of th L $(5, 5)$ Q $(0, -8)$ 2. Make a coor following of	the following (ii) -3 , e 1 cm = 1 u ordered pairs d pairs can b ing table gives 10 20 80 70 beints of the p e following p M (0, 5) R (-2, 0) ordinate syst rdered pairs	g points in a -4 (iii init on the a of the linea be found an s measures 30 60 plane which points belon N (S (em on a gra	ar equation d plotted' (in degree 40 50 and o riot bing to the y (3, 0) (0, -4) aph paper	elong to a - axis? O (0, T (A, T and plot	 (iv) 2, - 4 and a acute 60 30 any of tr 0) the point 	5 plot the angles 70 20 ne quad	(vi) 2, 0 em. How many of a right 80 10 frant. P (-6, 0) Z (0, b) esponding to the
7. 8. 9. 10 11	Plot each of (i) $(3, 4)$ Use the scal Find some c such ordere The followin triangle X Y Name the p Which of th L $(5, 5)$ Q $(0, -8)$ 2. Make a coordinate following of (2, 6), (1, 5)	the following (ii) -3 , e 1 cm = 1 u ordered pairs d pairs can b ag table gives 10 20 80 70 boints of the p e following p M (0, 5) R (-2, 0) ordinate syst rdered pairs b), (0, 1), (2, 0)	g points in a -4 (iii init on the a of the linea be found an s measures 30 60 plane which points belond N (S (em on a gravents) (0, 0), (-	ar equation d plotted' (in degree 40 50 f do not bing to the y (3, 0) (0, -4) aph paper 3, 5), (2, 1)	$\frac{50}{40}$ elong to a - axis? O (0, T (A, r and plot -5), (2, -	(iv) 2, – = 4 and o acute 60 30 any of tr 0) 0) the poin 5) and (5 plot the angles 70 20 ne quad nts corr -3, -5)	(vi) 2, 0 em. How many of a right 80 10 Irant. P (-6, 0) Z (0, b) responding to th

ASSIGNMENT – LINEAR EQUATION

- Draw the graphs of linear equations y = x and y = -x on the same cartesian plane. What do you observe?
- 2. Determine the point on the graph of the linear equation 2x + 5y = 19, whose ordinate is $1\frac{1}{2}$ times its abscissa.
- 3. Draw the graph of the equation represented by a straight line which is parallel to the *x*-axis and at a distance 3 units below it.
- Draw the graph of the linear equation whose solutions are represented by the points having the sum of the coordinates as 10 units.
- Write the linear equation such that each point on its graph has an ordinate 3 times its abscissa.
- 6. If the point (3, 4) lies on the graph of 3y = ax + 7, then find the value of a.
- 7. How many solution(s) of the equation 2x + 1 = x 3 are there on the :
 (i) Number line
 (ii) Cartesian plane
- 8. Find the solution of the linear equation x + 2y = 8 which represents a point on
 (i) x-axis
 (ii) y-axis
- For what value of c, the linear equation 2x + cy = 8 has equal values of x and y for its solution.
- 10. Let y varies directly as x. If y = 12 when x = 4, then write a linear equation. What is the value of y when x = 5?

ASSIGNMENT -EUCLID'S GEOMETRY

- Q1. Define :
- (i) Axioms (ii) Theorems
- (iii) Collinear Points (iv) Concurrent lines
- Q2.Differentiate between parallel lines and intersecting lines.
- Q3.Given two distinct points A and B, can there be a line that passes through A and B? How many such lines are there?

Q4. If *l* and *m* are intersecting lines, $1 \parallel p$ and $m \parallel q$, show that *p* and *q* also intersect.

Q5.If line segments AB, AC, AD and AE are parallel to a line *l*, then points A, B, C, D and E are collinear. Is it true?

Q6.Two lines which are both parallel to the same line, are parallel to each other. Prove it.

Q7. Write five postulates given by Euclid.

Q8.Define a) Line segment b) Parallel lines c) Ray

HINDI

मीरमावलाश्च लार्थ (२०१२) लाहा - नवीं, विषय-हिंदी classmate लाहा में पढ़ाए गए प्रत्येक पाठ में से माँच - माँच उपस्र्भ व प्रत्यय युक्त शब्द चाँटकर उनमें से उपस्र्भ, प्रत्यय व सूर शब्द अलग कीजिए। 1 संयुक्त व्यंजन, अनुस्वार, रेफ व पर्वन से निर्मित माँच - माँच शाह्य रिश्यकर उनका वर्ण-विच्छ्य कीजिए। 2 नए माखाइस फ़्रान हेतु २०-२५ छाट्यों में एक विज्ञापन तैयार 3 chlup नारिला मैचन के लिए २०-२५ शह्यों में एक विज्ञापन तैयार कीजिए (4) रूरदर्शन के अपने सबसे मनपसंद जार्यक्रम की चर्चा करते हुए अपने मित्र को पत्र शिखिए। 3 प्रवाम आवाधिक परीक्षा ला सम्पूर्ण पाढ्यक्रम याद कीर्णिए। (6) 12240ी: - संपूर्ण व्याय संदर लिखावर में व्याकरण ग्रह कार्य पास्तव्या (कॉपी) में व्योजिए।